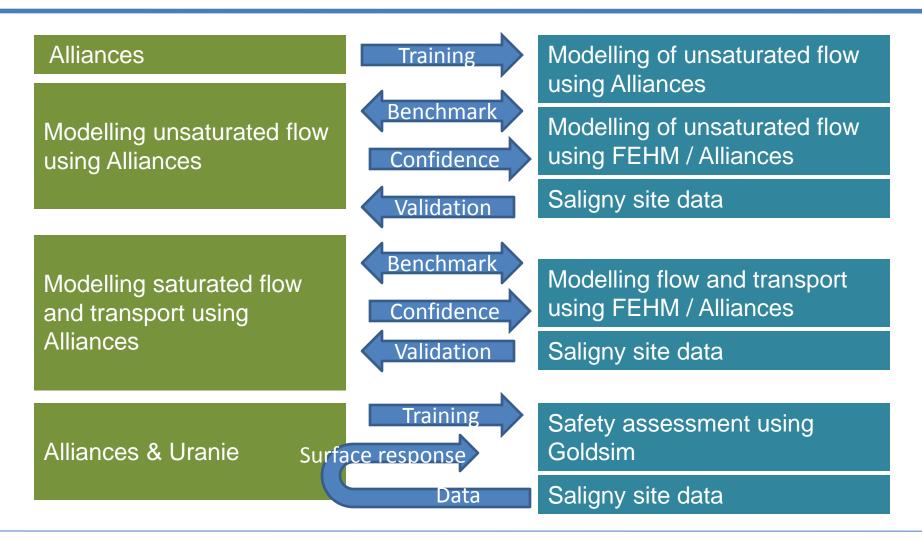


Numerical Simulations for Radioactive Waste Disposal NSRAWD

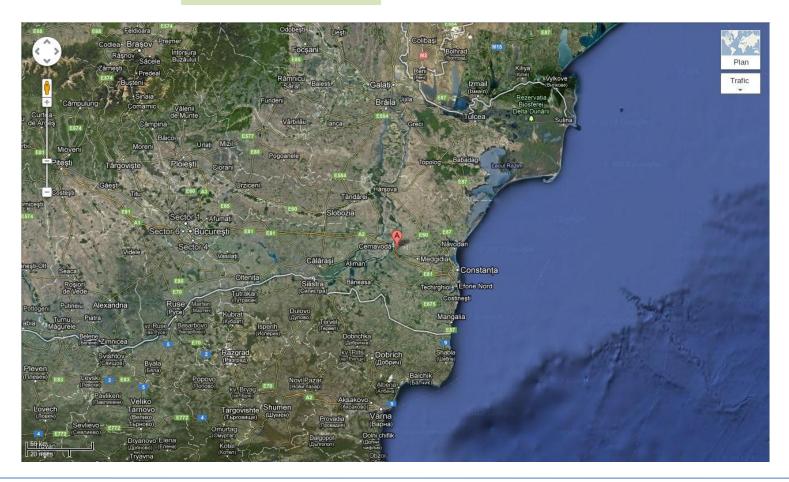
Scope of the project

Develop numerical simulation for radioactive waste disposal (LILW), combining computational work with experimental activities in order to improve and validate flow and transport numerical models.


Objectives:

- Improve and validate flow and transport numerical models and codes used in disposal safety assessment at Saligny.
- Develop new in-field test and collect experimental data for Alliances codes validations and for better understanding of site characteristics.
- Increase confidence in the numerical modelling used in radioactive waste disposal.
- Develop an integrated system for safety assessment of LIL waste disposal applied to Saligny site as an useful tool for further application in the site licence.

Task sharing



The Saligny site

theta s

(porosity)[-]

0.4141

0.3852

0.4097

0.3944

0.4132

0.3935

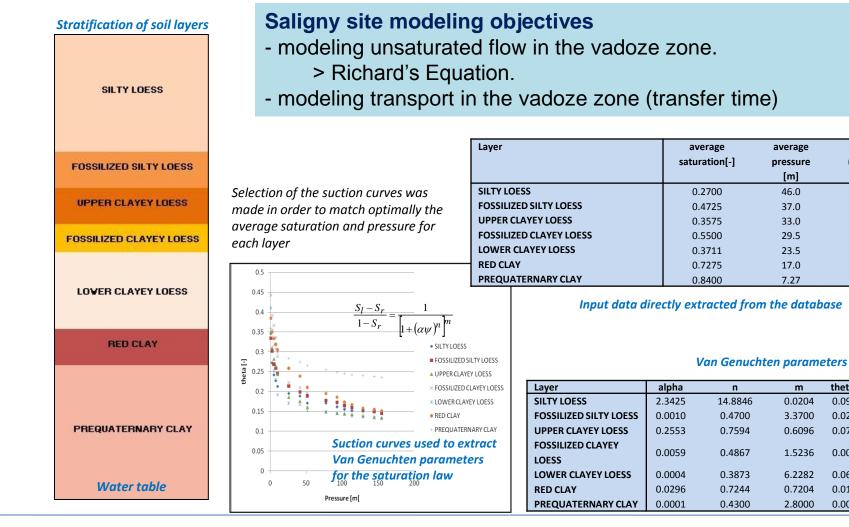
0.3755

theta r

0.0968

0.0272

0.0727

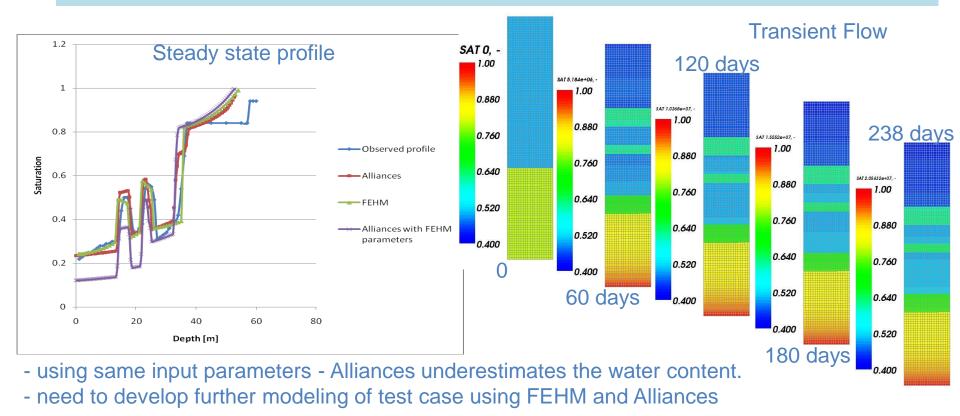

0.0017

0.0682

0.0111

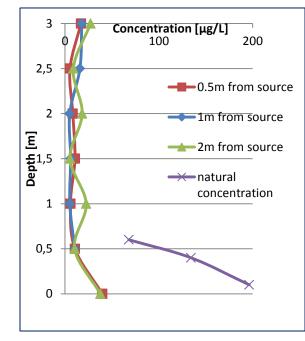
0.0092

Progress (2/7)



Unsaturated flow modelling objectives

- Inter-comparison of Alliances and FEHM predictions with experimental data (validation)
- Get in-field data (calibration) on unsaturated flow



Tracer test objectives

- get in-field data on chemical species migration

Results obtained

 ✓ Natural value of iodine concentration are much higher than in samples tested for iodine dispersion probably due to iodine sorption in organic material nearby soil surface

Status :

- designed, planned and launched
 - tracer: lodine (KI)
 - concentration: 20 mg/l
 - depths: 50 cm
 - location: meteo station
 - launched: 01/09/2011
 - sampling: 20/06/2012

 \checkmark comparing the values obtained with iodine concentrations previously measured at depths > 10m (between 5 and 10 µg/L), iodine transport is very slow and not influenced by the tracer launched

Tracer test objectives Status : - validate transport models for reactive transport - tracer transport simulations C 1.296e+07, -C 2.592e+06 0.0600 0.007000 SILTY LOESS 0.005600 0.0480 0.004200 0.0360 ✓ 30 days **FOSSILIZED SILTY LOESS** 0.0240 0.002800 ✓ 150 days **UPPER CLAYEY LOESS** 0.0120 0.001400 **FOSSILIZED CLAYEY LOESS** 0.00 0.000 C 7.776e+06 C1.8144e+07, -LOVER CLAYEY LOESS 0.02000 0.004800 RED CLAY 0.01500 0.003600 0.01000 0.002400 PREQUATERNARY CLAY 0.005000 0.001200 ✓ 90 days ✓ 190 days

Neural networks approach to response surface methodology

Objectives

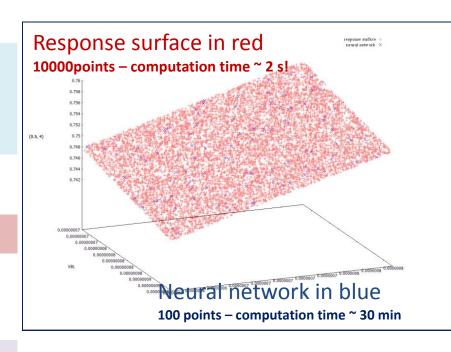
- Compute a response surface that allows to predict output variables <u>much faster</u> than with the computer code in order to perform statistics, uncertainty analysis, influent parameters selection ...

Status :

Alliances training session (09/2012) performed by CEA for INR in using Uranie module for response surface construction.

• First step : the computer code is launched several times according to an experimental design in order to create the neural network (learning database + testing database) used for response surface construction.

 Second step : After neural network is done, the output of any combination of the input variables set in the experimental design can be predicted without running the code.


Set of conditions

Example test

Unsaturated flow in two-layered vertical soil.

 \rightarrow Saturation dependence on layers permeability.

		Set of conditions
Po Top & Lavor	Width: 10m Porosity: 0.4141 θ _t : 0.162 VG α: 0.634 [1/m] VG n: 1.640 VG m: 0.390	Initial conditions: Eff saturation = 0.5 in Top Layer Eff saturation = 0.8 in Bottom Layer Boundary conditions: Eff saturation = 0.4 on top of the Top Layer Eff saturation = 0.7 on bottom of the Bottom Layer
· ·		Experimental design
		Permeability Top Layer in [6E-7, 8E-7], uniform Permeability Bottom Layer in [7E-8, 9E-8], uniform
Bottom Pe Layer & V	/idth: 5m orosity: 0.3852 ;: 0.127 G α: 0.935 [1/m] G n: 1.297 G m: 0.228	LHS Sampling Output
V	G m: 0.228	saturation in point (0.5, 4)

Perspectives of collaboration

Under the project

- Hydraulic modelling in the Saligny aquifer.
- Transport modelling in the vadoze zone on the Saligny site and benchmarking.
- Model transport using surface response build by Uranie module inside Alliances.

Beyond the project

- Joint studies on the hydro-geological and hydro-chemical modelling of the Saligny site.
- Joint modelling of alternative subsurface radioactive waste disposals and analysis of different scenarios.

Benefits

• Improve and validate flow and transport numerical models and codes used in disposal safety assessment at Saligny.

• Improve site characterisation and better understanding of transport processes.

• Increase confidence in the numerical modelling used in safety assessment of radioactive waste disposal. • Improve and validate flow and transport numerical models used by Alliances platform based on experimental data.

• Promote a larger use of Alliances platform and transfer knowledge on radioactive waste modelling.

• Increase confidence in the numerical modelling used in radioactive waste disposal.